Transfer Matrix Method

Light propagation in a multilayered film structure (Figure 1) can be calculated based on transfer matrix method.

Figure 1. A multilayered structure.
Assume all the materials are non-magnetic ($\mu_{r}=1$)
First define the propagation direction, which is illustrated in Figure 2. When wave propagates along the x axis from left to right, the expression of the electric field is

$$
\begin{equation*}
E_{1+}=\left|E_{1+}\right| \exp \left(i k_{1} x\right) \tag{S1}
\end{equation*}
$$

when wave propagates in the opposite direction, it becomes

$$
\begin{equation*}
E_{1-}=\left|E_{1-}\right| \exp \left(-i k_{1} x\right) \tag{S2}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1}=\frac{2 \pi}{\lambda} n_{1} \tag{S3}
\end{equation*}
$$

Figure 2. Defining the positive direction of propagation.

Thin-film filters consist of boundaries between different homogenous media, as shown in Figure 3. At the interface of media 1 and 2, the boundary conditions are

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
E_{1}^{\|}=E_{2}^{\|} \\
B_{1}^{\|}=B_{2}^{\|}
\end{array}\right. \tag{S4}\\
& \text {and } B=\frac{n}{c} E
\end{align*}
$$

Therefore

$$
\left\{\begin{array} { c }
{ E _ { 1 + } + E _ { 1 - } = E _ { 2 + } + E _ { 2 - } } \tag{S5}\\
{ B _ { 1 + } - B _ { 1 - } = B _ { 2 + } - B _ { 2 - } }
\end{array} \rightarrow \left\{\begin{array}{c}
E_{1+}+E_{1-}=E_{2+}+E_{2-} \\
n_{1}\left(E_{1+}-E_{1-}\right)=n_{2}\left(E_{2+}-E_{2-}\right)
\end{array}\right.\right.
$$

which can be written in matrix form:

$$
\left[\begin{array}{l}
E_{1+} \tag{S6}\\
E_{1-}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2}\left(1+\frac{n_{2}}{n_{1}}\right) & \frac{1}{2}\left(1-\frac{n_{2}}{n_{1}}\right) \\
\frac{1}{2}\left(1-\frac{n_{2}}{n_{1}}\right) & \frac{1}{2}\left(1+\frac{n_{2}}{n_{1}}\right)
\end{array}\right]\left[\begin{array}{l}
E_{2+} \\
E_{2-}
\end{array}\right]=D_{12}\left[\begin{array}{l}
E_{2+} \\
E_{2-}
\end{array}\right]
$$

D_{12} is a matrix to describe the process at the 1-2 interface.

Figure 3. Plane wave incident on a single interface.

Light propagation in homogenous medium 2 (thickness d_{2}) has the relations (Figure 4)

$$
\left\{\begin{array}{c}
E_{2+}^{\prime}=\left|E_{2+}\right| \exp \left(i k_{2} x+i k_{2} d_{2}\right)=E_{2+} \exp \left(i \frac{2 \pi}{\lambda} n_{2} d_{2}\right) \tag{S7}\\
E_{2-}^{\prime}=\left|E_{2-}\right| \exp \left(-i k_{2} x-i k_{2} d_{2}\right)=E_{2-} \exp \left(-i \frac{2 \pi}{\lambda} n_{2} d_{2}\right)
\end{array}\right.
$$

$$
\left[\begin{array}{l}
E_{2+} \tag{S8}\\
E_{2-}
\end{array}\right]=\left[\begin{array}{cc}
\exp \left(-i \frac{2 \pi}{\lambda} n_{2} d_{2}\right) & 0 \\
0 & \exp \left(i \frac{2 \pi}{\lambda} n_{2} d_{2}\right)
\end{array}\right]\left[\begin{array}{l}
E_{2+}^{\prime} \\
E_{2-}^{\prime}
\end{array}\right]=P_{2}\left[\begin{array}{l}
E_{2+}^{\prime} \\
E_{2-}^{\prime}
\end{array}\right]
$$

P_{12} is a matrix to describe the propagation in the medium 2.

Figure 4. Plane wave propagating in a homogeneous medium.

Figure 5 shows model geometry of light traveling through N layers. The following matrix relation can be deduced referring to Equation S 6 and S 8 :

$$
\begin{align*}
& {\left[\begin{array}{l}
E_{1+} \\
E_{1-}
\end{array}\right]=D_{12}\left[\begin{array}{c}
E_{2+} \\
E_{2-}
\end{array}\right]=D_{12} P_{2}\left[\begin{array}{c}
E_{2+}^{\prime} \\
E_{2-}^{\prime}
\end{array}\right]=D_{12} P_{2} D_{23}\left[\begin{array}{c}
E_{3+} \\
E_{3-}
\end{array}\right]} \\
& =\ldots=D_{12} P_{2} D_{23} P_{3} \cdots P_{N-1} D_{(N-1) N}\left[\begin{array}{l}
E_{N+} \\
E_{N-}
\end{array}\right] \tag{S9}\\
& =\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]\left[\begin{array}{l}
E_{N+} \\
E_{N-}
\end{array}\right]
\end{align*}
$$

Figure 5. Plane wave traveling through a number of layers.
and there is no back reflected light at the last medium N, so

$$
E_{N-}=0 \rightarrow\left\{\begin{array}{l}
E_{1+}=M_{11} E_{N+} \tag{S10}\\
E_{1-}=M_{21} E_{N+}
\end{array}\right.
$$

The irradiance intensity is related to the Poynting vector

$$
\begin{equation*}
I=\frac{1}{2} \operatorname{Re}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \tag{S11}
\end{equation*}
$$

or

$$
\begin{equation*}
I \propto n|E|^{2} \tag{S12}
\end{equation*}
$$

Reflectance R is defined as the ratio of the reflected and incident irradiances and transmittance T as the ratio of the transmitted and incident irradiances:

$$
\begin{gather*}
R=\left|\frac{E_{1-}}{E_{1+}}\right|^{2}=\left|\frac{M_{21}}{M_{11}}\right|^{2} \tag{S13}\\
T=\frac{n_{N}}{n_{1}}\left|\frac{E_{N+}}{E_{1+}}\right|^{2}=\frac{n_{N}}{n_{1}}\left|\frac{1}{M_{11}}\right|^{2} \tag{S14}
\end{gather*}
$$

For absorptive materials, use the complex \tilde{n} to replace n

$$
\begin{equation*}
\tilde{n}=n+i \kappa, \text { if we define wave function } E \sim \exp (i k x) \tag{S15}
\end{equation*}
$$

note: use $\tilde{n}=n-i \kappa$, if we define wave function $E \sim \exp (-i k x)$
κ - extinction coefficient

For oblique angles (Figures 6 and 7), boundary conditions are

$$
\left\{\begin{align*}
n_{1}^{2} E_{1}^{\perp} & =n_{2}^{2} E_{2}^{\perp} \tag{S16}\\
E_{1}^{\|} & =E_{2}^{\|} \\
B_{1}^{\perp} & =B_{2}^{\perp} \\
B_{1}^{\|} & =B_{2}^{\|}
\end{align*}\right.
$$

and from Snell's law,

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{S17}
\end{equation*}
$$

For s-polarised light, in the notation of Figure 6, is

$$
\begin{gather*}
{\left[\begin{array}{cc}
1 & 1 \\
n_{1} \cos \theta_{1} & -n_{1} \cos \theta_{1}
\end{array}\right]\left[\begin{array}{l}
E_{1+} \\
E_{1-}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
n_{2} \cos \theta_{2} & -n_{2} \cos \theta_{2}
\end{array}\right]\left[\begin{array}{l}
E_{2+} \\
E_{2-}
\end{array}\right]} \\
D_{12}=\left[\begin{array}{cc}
1 & 1 \\
n_{1} \cos \theta_{1} & -n_{1} \cos \theta_{1}
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 1 \\
n_{2} \cos \theta_{2} & -n_{2} \cos \theta_{2}
\end{array}\right] \tag{S18}
\end{gather*}
$$

and p-polarised light can be described as

$$
\begin{gather*}
{\left[\begin{array}{cc}
\cos \theta_{1} & \cos \theta_{1} \\
n_{1} & -n_{1}
\end{array}\right]\left[\begin{array}{c}
E_{1+} \\
E_{1-}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta_{2} & \cos \theta_{2} \\
n_{2} & -n_{2}
\end{array}\right]\left[\begin{array}{c}
E_{2+} \\
E_{2-}
\end{array}\right]} \\
D_{12}=\left[\begin{array}{cc}
\cos \theta_{1} & \cos \theta_{1} \\
n_{1} & -n_{1}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\cos \theta_{2} & \cos \theta_{2} \\
n_{2} & -n_{2}
\end{array}\right] \tag{S19}
\end{gather*}
$$

a)

b)

Figure 6. a) Convention defining the positive directions of electric and magnetic vectors for s-polarised light (TE waves). b) Convention defining the positive directions of electric and magnetic vectors for p -polarised light (TM waves).

Light of oblique incidence propagating in homogeneous medium (Figure 7) are analogous to that of normal incidence:

$$
\left[\begin{array}{l}
E_{2+} \tag{S20}\\
E_{2-}
\end{array}\right]=\left[\begin{array}{cc}
\exp \left(-i \frac{2 \pi}{\lambda} n_{2} d_{2} \cos \theta_{2}\right) & 0 \\
0 & \exp \left(i \frac{2 \pi}{\lambda} n_{2} d_{2} \cos \theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
E_{2+}^{\prime} \\
E_{2-}^{\prime}
\end{array}\right]=P_{2}\left[\begin{array}{l}
E_{2+}^{\prime} \\
E_{2-}^{\prime}
\end{array}\right] .
$$

b)

Figure 7. a) s-polarised light and b) p-polarised light propagating in homogeneous medium with oblique angles.

